Главная > Разное > Математическая биофизика клетки
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

2.7. Эффект депонирования

При математическом моделировании механизма одночастотных гликолитических колебаний [87—100] было замечено, что участие быстрой обратимой реакции в биохимическом автогенераторе увеличивает период автоколебаний примерно в раз (К — константа равновесия обратимой реакции) [72, 83, 84]. Это явление имеет важное значение для теории клеточных часов — еще не идентифицированной автоколебательной биохимической системы, создающей колебания с периодом [84, 101—104].

Эффект депонирования, или замедление колебаний, вызываемое быстрой обратимой реакцией, имеет простое объяснение.

Пусть в биохимической системе имеется вещество участвующее в различных обменных реакциях. Внесем в эту систему реакцию быстрого обратимого депонирования вещества в его резервную, метаболически неактивную форму

Здесь константы скорости. Теперь суммарная концентрация вещества стала равной Если реакция (2.67) быстрая, то в ней за короткое время устанавливается равновесие, при котором

С участием условия (2.68) суммарная концентрация вещества равна где константа равновесия реакции (2.67). Таким образом, внесение в биохимическую систему реакции (2.67) эквивалентно увеличению в раз суммарной концентрации вещеста а это означает увеличение во столько же раз постоянной времени для изменения для того чтобы синтезировать или расходовать увеличенное в К 1 раз количество вещества, надо в раз больше времени.

В клетках депонирование метаболитов и их превращение из резервной в метаболически активную форму осуществляется отдельными ферментами. Анализ эффекта депонирования в таких сложных случаях может быть проведен лишь с помощью математических моделей [72, 105], так как из-за нелинейности кинетики ферментативных реакций не удается в явном виде вычислить фактор замедления, т. е. величину, на которую увеличивается постоянная времени концентрации депонируемого вещества.

Детальное исследование моделей показывает, что ферментативные реакции в проточных условиях обладают большим разнообразием динамического поведения, которое никогда не наблюдается

в непроточных условиях обычных биохимических экспериментов с выделенными из клетки ферментами. Сравнивая модели, описывающие совершенно различные молекулярные механизмы, контролирующие активности ферментов (механизмы активации и угнетения ферментов субстратами или продуктами), нетрудно заметить тем не менее поразительную общность динамического поведения реакций в проточных условиях. Эта общность объясняется тем, что все рассмотренные молекулярные механизмы регуляции активности ферментов, быть может совершенно не сопоставимые биохимически, создают однотипную нелинейность — гистерезис квазистационарной входной или выходной характеристики.

В главах 3 и 4 будет показано, что подобный гистерезис может возникать также и в полиферментных системах и возбудимых клеточных мембранах. И хотя молекулярные механизмы, создающие гистерезис в полиферментной системе и мембране, также совершенно различны, этот гистерезис приводит к тому же разнообразию форм динамического поведения, какое было продемонстрировано в этой главе.

<< Предыдущий параграф Следующий параграф >>
Оглавление